г. Каменск-Уральский, ул. Мусорского 16

пн-пт с 09:00 до 18:00

Cara Mencari Keliling Segitiga

Mencari keliling segitiga berarti mencari jarak yang mengelilingi segitiga tersebut[1] Cara yang paling sederhana untuk mencari keliling segitiga adalah dengan menjumlahkan seluruh panjang sisinya, tetapi jika kamu tidak mengetahui seluruh panjang sisinya, maka kamu perlu menghitungnya terlebih dahulu. Artikel ini pertama-tama akan mengajarkanmu untuk mencari keliling segitiga di saat kamu mengetahui seluruh panjang sisinya; cara ini adalah cara yang paling mudah dan paling banyak digunakan. Kemudian, artikel ini akan menjelaskan tentang cara mencari keliling segitiga siku-siku di saat kamu hanya mengetahui dua sisinya. Akhirnya, artikel ini akan menjelaskan cara mencari keliling segitiga apa pun yang kamu ketahui dua panjang sisinya dan besar sudut di antaranya menggunakan Hukum Kosinus.

Mencari Keliling Segitiga Saat Diketahui Ketiga Sisinya

Ingat kembali rumus untuk mencari keliling. Rumusnya yaitu: K= a + b + c. a, b, dan c merupakan panjang sisi-sisi segitiga dan K merupakan keliling segitiga.

  • Maksud rumus ini secara sederhana adalah bahwa untuk mencari keliling segitiga, kamu hanya perlu menjumlahkan panjang ketiga sisinya.

Perhatikan segitigamu dan tentukan panjang ketiga sisinya. Dalam contoh ini, panjang sisi a = 5, panjang sisi b = 5, dan panjang sisi c = 5.

  • Contoh khusus ini disebut sebagai segitiga sama sisi, karena seluruh sisinya memiliki panjang yang sama. Tetapi, ingatlah bahwa rumus keliling segitiga sama untuk segitiga apa pun.

Jumlahkan panjang ketiga sisinya untuk mencari keliling segitiga. Dalam contoh ini, 5 + 5 + 5 = 15. Dengan demikian, K = 15.

  • Dalam contoh lain, di mana a = 4b = 3, dan c=5, keliling segitiga tersebut adalah: K = 3 + 4 + 5, or 12.

Selalu tambahkan satuan ke dalam jawaban akhir. Pada contoh ini, sisi diukur dalam satuan sentimeter, sehingga jawaban akhir harus menggunakan sentimeter. Jawaban akhir yaitu: K = 15 cm.

Mencari Keliling Segitiga dari Segitiga Siku-Siku yang Diketahui Dua Sisinya

Ingatlah apa yang dimaksud dengan segitiga siku-siku. Segitiga siku-siku adalah segitiga yang memiliki satu sudut siku-siku (90 derajat). Sisi segitiga yang berlawanan dengan sudut siku-siku adalah sisi yang paling panjang, dan disebut sebagai sisi miring. Segitiga siku-siku sering muncul dalam ujian matematika, dan untungnya ada rumus yang sangat mudah untuk mencari panjang sisi yang tidak diketahui.

Ingatlah kembali Teorema Pythagoras. Teorema Pythagoras menyatakan bahwa untuk segitiga siku-siku apa pun denagn panjang sisi a dan b, serta sisi miring c berlaku, a2 + b2 = c2.[2]

Perhatikan segitigamu, dan tandai sisinya dengan «a,» «b,» dan «c». Ingatlah bahwa sisi yang paling panjang dari segitiga disebut sebagai sisi miring. Sisi ini akan berlawanan dengan sudut siku-siku dan harus ditandai sebagai c. Tandai dua sisi yang lebih pendek sebagai a dan b. Tidak masalah kamu akan menandai sisi yang mana sebagai a dan b, hasil perhitungannya akan sama saja!

Masukkan panjang sisi yang kamu ketahui ke dalam Teorema Pythagoras. Ingatlah bahwa a2 + b2 = c2. Ganti panjang sisi sesuai variabel huruf di dalam rumus.

  • Jika, sebagai contohnya, kamu mengetahui bahwa panjang sisi a = 3 dan sisi b = 4, kemudian, masukkan nilai tersebut ke dalam rumus sebagai berikut: 32 + 42 = c2.
  • Jika kamu mengetahui bahwa panjang sisi a = 6, dan sisi miring c = 10, maka kamu harus memasukkannya ke dalam rumus sebagai berikut: 62 + b2 = 102.

Selesaikan persamaan di atas untuk mencari panjang sisi yang tidak diketahui. Pertama-tama, kamu perlu mengetahui kuadrat dari rumus togel panjang sisi yang diketahui. Hal ini berarti kamu harus mengalikan panjang sisi dengan nilainya sendiri (sebagai contoh 32 = 3 * 3 = 9). Jika kamu mencari panjang sisi miring, cukup jumlahkan nilai kuadrat kedua sisi segitiga dan cari akar kuadrat dari hasilnya. Jika yang tidak diketahui adalah sisi yang lain, maka kamu harus melakukan pengurangan sederhana, dan kemudian menarik akar kuadrat dari hasilnya untuk mendapatkan sisi yang kamu cari.

  • Dalam contoh yang pertama, jumlahkan nilai kuadrat 32 + 42 = c2 dan diperoleh 25= c2. Kemudian hitung akar kuadrat dari 25 untuk mencari panjang sisi c = 5.
  • Dalam contoh yang kedua, kuadratkan panjang sisi dalam persamaan 62 + b2 = 102 dan diperoleh 36 + b2 = 100. Kurangkan 36 dari kuadrat sisi miring, sehingga diperoleh b2 = 64, kemudian, tarik akar kuadrat dari 64 sehingga diperoleh b = 8.

Jumlahkan semua panjang sisi segitiga untuk mencari kelilingnya. Ingatlah bahwa keliling segitiga K = a + b + c. Sekarang setelah kamu mengetahui semua panjang sisi segitiga ab dan c, kamu hanya perlu menjumlahkan ketiganya untuk mencari keliling.

  • Dalam contoh pertama kita, K = 3 + 4 + 5, atau 12.
  • Dalam contoh ke dua kita, K = 6 + 8 + 10, atau 24.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *